

Allied Mathematics Courses (Chemistry)

Courses of Study, Schemes of Examinations & Syllabi (Choice Based Credit System)

THE DEPARTMENT OF MATHEMATICS (DST – FIST sponsored) BISHOP HEBER COLLEGE (Autonomous) (Reaccredited with 'A' Grade (CGPA – 3.58/4.0) by the NAAC & Identified as College of Excellence by the UGC) DST – FIST Sponsored College & DBT Star College TIRUCHIRAPPALLI – 620 017 TAMIL NADU, INDIA

2020 – 2021

Allied Mathematics Courses offered to students of Under Graduate Programme in Chemistry

Sem.	Course	Code	Title	Hrs./	Credits	Marks		
				week		CIA	ESA	Total
I	I	U20MAC11	Algebra and Calculus	5	4	25	75	100
II	II	U20MAC22	Vector Calculus and Trigonometry	4	4	25	75	100
I	Ш	U20MAC23	Differential Equations and Laplace Transforms	4	4	25	75	100

(For the candidates admitted from the year 2020 onwards)

Allied Course I - Algebra and Calculus

Sem. I Total Hrs. 75 Code: U20MAC11 Credits: 4

General objectives:

On completion of this course, the learner will

- 1. know the properties of Eigen values, Eigen vectors and the applications of characteristic equations.
- 2. be able to understand higher order differentiation and to know the applications of differential calculus.
- 3. know properties of definite integrals and methods of integration of higher powers of trigonometric functions using recurrence relations.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find the eigen values, eigen vectors of a given matrix.
- 2. find higher derivatives of given functions.

Algebra

Unit I

Eigen values and Eigen vectors - Cayley-Hamilton Theorem – Diagonalisation of matrices(problems only)

Calculus

Unit II

Differentiation – Definition - Rules for differentiation – Standard forms – Successive differentiation – nth derivatives – Standard forms – Use of Partial fractions – Applilcation of De-Moivre's theorem – Trigonometrical transformations.

Unit III

Leibnitz's theorem (statement only) on the n^{th} differential co-efficient of the product of two functions of x (problems only) – curvature and radius of curvature – cartesian formula for radius of curvature.

Unit IV

Introduction – Methods of Integration – Integrals of the functions involving $a^2 \pm x^2$ - Integrals of functions of the form $\int f(x)^n f'(x) dx$ – Definite Integrals – Properties of definite integrals - Reduction formulae for the three definite integrals

 $\int_0^\infty e^{-ax} x^n dx$, $\int_0^{\frac{\pi}{2}} \sin nx dx$ and $\int_0^{\frac{\pi}{2}} \cos nx dx$ where n is a positive integer. (Problems only)

Unit V

The Gamma and Beta functions – Gamma function – recurrence formulae for $\Gamma(n)$ - connection between gamma function and factorials – Beta function – relation between beta and gamma functions – applications of Beta and Gamma functions.

Text Books

1. Dr P Mariappan, Dr V Franklin and Others, Algebra, Calculus and Analytical Geometry of 3D, 1st Edition, New Century Book House, Pvt. Ltd, Chennai.

Unit I	Chapter 1
Unit II & Unit III	Chapter 2
Unit IV	Chapter 3
Unit V	Chapter 4

References

- 1. T. K. Manichavasagam Pillai, T. Natarajan & K. S. Ganapathy, Algebra (Vol.II), S.Viswanathan Pvt. Ltd.Reprint 2004.
- 2. S. Narayanan and T. K. Manichavasagam Pillai, Calculus (Vol. I, II) Viswanathan Printers and Publishers, Reprint 2003.
- 3. M. K. Venkataraman, Engineering Mathematics, National Publishing Company, 1999.

Allied Course II - Vector Calculus and Trigonometry

Sem. II Total Hrs. 60

General objectives:

On completion of this course, the learner will

- 1. know the physical applications of derivatives of vectors especially the divergence and curl.
- 2. be able to understand line integral, surface integral and volume integral, to know their inter-relations and their applications
- 3. know the expansions of circular and hyperbolic functions and their powers.

Learning outcomes:

On completion of the course, the student will be able to

- 1. find derivatives of vector functions.
- 2. evaluate line, surface and volume integrals.
- 3. expand circular functions as a series.
- 4. evaluate limits of combination of trigonometric functions.

Vector Calculus

Unit I

Scalar and vector point functions – Direction and magnitude of gradient – Maximum value of driectional derivative – Divergence and Curl – Definitions (Solenoidal and Irrotational Vectors) – Vector Identities – Formula involving operator ∇ twice.

Unit II

Vector integration – Line integral – Surface integral – Volume integral.

Unit III

Gauss divergence theorem, Stoke's theorem, Green's theorem (in plane), (No proof is needed-Statements only).

Trigonometry

Unit IV

Expansions for sin $n\theta$, cos $n\theta$, tan $n\theta$ when n is a positive integer – Expansion for $\tan(\theta_1 + \theta_2 + \ldots + \theta_n)$ -Expansions for $\cos^n \theta$ and $\sin^n \theta$ in terms of multiples of θ - Expansions of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in terms of θ .

Code : U20MAC22 Credits : 4

Unit V

Euler's formula - Hyperbolic functions – Relation between the circular and hyperbolic functions – Inverse hyperbolic functions sinh⁻¹x, cosh⁻¹x and tanh⁻¹x in terms of logarithmic functions- Separation into real and imaginary parts of sin(x+iy), cos(x+iy), tan(x+iy), sinh(x+iy), cosh(x+iy), tanh(x+iy) and $tan^{-1}(x+iy)$.

Text Book

1. Dr P. Mariappan, Dr A Emimal Kanaga Pushpam and Others, Vector Calculus and Trigonometry, New Century Book House, Pvt.Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 4
Unit V	Chapter 5

References

- 1. S. Narayanan, T.K.Manickavasagam Pillai, Ancillary Mathematics, Vol. III, S. Viswanathan Pvt. Ltd., Reprint 1999.
- 2. S. Narayanan, T.K.Manickavasagam Pillai, Trigonometry, S.Viswanathan Pvt. Ltd., Reprint 2004.
- 3. P. Duraipandian, Laxmi Duraipandian and Jayamala Paramasivan, Trigonometry, Emerald Publishers, Reprint 1999.

Allied Course III – Differential Equations and Laplace Transforms

Sem. II Total Hrs. 60 Code : U20MAC23 Credits : 4

General objectives:

On completion of this course, the learner will

- 1. know methods of solving differential equations of one dimension and higher dimension.
- 2. know application of Laplace transforms in solving ordinary differential equations.
- 3. be able to understand periodic functions through circular functions as Fourier series.

Learning outcomes:

On completion of the course, the student will be able to

- 1. classify and solve specific types of ordinary and partial differential equations.
- 2. solve differential and integral equations using Laplace transforms.

Differential Equations

Unit I

Ordinary Differential Equations – First Order and Higher Degree – Equation solvable for $\frac{dy}{dx}$ - Equation solvable for

y – Equation solvable for x (simple problems only) – Clairaut's Form. (simple case only)

Unit II

Derivation of Partial Differential Equations by elimination of arbitrary functions – classification of Integrals – some standard types of First Order Partial Differential Equations – Other standard forms.

Laplace Transforms

Unit III

Definition – Condition for the existence of the Laplace Transforms – Properties of Laplace Transforms – Laplace Transform of some standard functions – Some general theorems.

Unit IV

The Inverse Laplace Transforms – Shifting theorem for Inverse Transform – The method of partial fraction can be used to find the Inverse transform of certain functions – Related theorems.

Unit V

Special cases – applications to solutions of Differential Equations.

Text Book

1. Dr R Gethsi Sharmila, Dr R Janet and Others, Differential Equations, Laplace Transforms and Fourier Series, New Century Book House, Pvt. Ltd, Chennai.

Unit I	Chapter 1
Unit II	Chapter 2
Unit III	Chapter 3
Unit IV	Chapter 4
Unit V	Chapter 4

References

- 1. S. Narayanan and T. K. Manichavasagam Pillai, Calculus (Vol. III) S.Viswanathan Printers and Publishers, Reprint 2004.
- 2. Vittal.P.R., Allied Mathematics, Margham Publications, Chennai, Reprint 2000.
- 3. Narasing Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, New Delhi, Fifteenth printing, 1999.